1. Home
  2. Docs
  3. Content Creation
  4. Real-World Capture
  5. Depth Sensors + RGB Fusion

Depth Sensors + RGB Fusion

Objective:

Accurate real-world scene digitization for autostereoscopic displays requires high-fidelity depth + RGB fusion to enable glasses-free 3D viewing.


Key Components & Metrics:

  1. Depth Sensor Selection:
    • LiDAR/ToF: Measures depth via time-of-flight (sub-cm precision, struggles with reflectivity).
    • Stereo RGB: Passive depth from dual cameras (lower cost, sensitive to lighting).
    • Metric: Depth error (mm) vs. ground truth (e.g., structured light scan).
  2. RGB-D Alignment:
    • Temporal Sync: Ensures depth/RGB frames are captured simultaneously (<1ms skew).
    • Spatial Calibration: Corrects parallax errors between sensors (reprojection error <0.5px).
  3. Fusion Algorithms:
    • Point Cloud Registration: ICP or neural networks (e.g., FlowNet3D) merge multi-sensor data.
    • Metric: Hole-filling rate (%), edge preservation (PSNR).

Challenges:

  • Dynamic Scenes: Motion artifacts from sensor latency.
  • Transparent/Reflective Surfaces: Depth sensor inaccuracies.

Optimization:

  • Hybrid Sensing: Combine ToF + stereo RGB for robustness.
  • AI-Based Denoising: DL models (e.g., 3D CNNs) clean raw depth maps.

Validation Setup:

  1. Test Patterns: Checkersboards, depth staircases.
  2. Ground Truth: High-precision 3D scanners (e.g., photogrammetry).

How can we help?