1. Home
  2. Docs
  3. Content Creation
  4. Real-World Capture
  5. Multi-Camera Arrays

Multi-Camera Arrays

Core Advantage:

Multi-camera arrays (e.g., 8+ synchronized cameras) provide high-resolution, wide-baseline 3D capture, enabling dense light field reconstruction or depth fusion for high-quality autostereoscopy.


Key Capture Metrics & Methods

1. Camera Alignment & Synchronization

  • Geometric Calibration:
    • Extrinsic (mm-level camera position accuracy) + intrinsic (lens distortion <0.1px).
    • Tool: Checkerboard patterns + bundle adjustment (e.g., COLMAP).
  • Temporal Sync:
    • Hardware triggers or genlock to minimize inter-frame delay (<100µs).

2. Depth/View Synthesis Quality

  • Stereo Matching:
    • MVS (Multi-View Stereo) algorithms (e.g., PatchMatch) generate depth maps.
    • Metric: Depth error (RMSE) vs. ground truth (e.g., LiDAR).
  • Light Field Interpolation:
    • Angular super-resolution (e.g., CNN-based view synthesis).

3. Parallax Range & Continuity

  • Baseline Optimization:
    • Wider spacing = stronger depth but risks occlusion holes.
    • Metric: Occlusion coverage (%) after inpainting.

Optimization Techniques

  • Hybrid Arrays: Combine wide/narrow baselines (e.g., 4× wide + 4× narrow).
  • Real-Time Preprocessing: FPGA-based rectification/streaming.
  • Neural Radiance Fields (NeRF): For novel-view synthesis from sparse inputs.

Validation Setup

  1. Test Scenes:
    • Dynamic objects (evaluate temporal consistency).
    • Fine textures (test stereo matching limits).
  2. Tools:
    • OpenMVS, NVIDIA Omniverse for reconstruction.

How can we help?